出版物
代謝反応システムのコンピュータ解析
1) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoideum: I. Formulation of alternative kinetic representations. J. Biol. Chem., 267(32), pp.22912-22918 (1992).

2) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoideum: II. Evaluation of model consistency and robustness. J. Biol. Chem., 267(32), pp.22919-22925 (1992).

3) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoideum: III. Analysis of steady-state and dynamic behavior. J. Biol. Chem., 267(32), pp.22926-22933 (1992).

4) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoideum: IV. Resolution of discrepancies between alternative methods of analysis. J. Biol. Chem., 267(32), pp.22934-22943 (1992).

5) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoideum: Systemic effects of including protein turnover in the current model. J. Biol. Chem., 268(23), pp.16917-16928 (1993).

6) Shiraishi, F. and Savageau, M. A., The tricarboxylic acid cycle in Dictyostelium discoidum: Two methods of analysis applied to the same model. J. theor. Biol., 178, pp.219-222 (1996).

7) Shiraishi, F., S-System analysis of the TCA cycle in Dictyostelium discoideum. in World Congress of Nonlinear Analysts. Florida, Walter de Gruyter, 1996.

8) Shiraishi, F., Takeuchi, H., Hasegawa, T., and Nagasue, H., A Taylor-series solution in Cartesian space to GMA-system equations and its application to initial-value problems. Appl. Math. Comput., 127, pp.103-123 (2002)

9) Shiraishi, F. and Voit, E. O., Solution of a two-point boundary value model of immobilized enzyme reactions, using an S-system based root-finding method. Appl. Math. Comput., 127, pp.289-310 (2002).

動的対数ゲイン計算法の開発
1) Shiraishi, F., Hato, Y., and Irie, T., An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory. J. theor. Biol., 234, pp.79-85 (2005).

超高精度数値計算法(Taylor級数法)の開発
1) Shiraishi, F., Hasegawa, T., and Nagasue, H., Accuracy of the numerical solution of two-point boundary value problem by the orthogonal collocation method. J. Chem. Eng. Jpn., 28(3), pp.316-323 (1995).

2) Shiraishi, F., Hasegawa, T., and Nagasue, H., Numerical solution of the two-point boundary value problem by the combined Taylor series method with a technique for rapidly selecting suitable stepsizes. J. Chem. Eng. Jpn., 28(3), pp.306-315 (1995).

3) Shiraishi, F. and Fujiwara, S., An efficient method for solving two-point boundary value problems with extremely high accuracy. J. Chem. Eng. Jpn., 29(1), pp.88-94 (1996).

4) Miyakawa, H., Nagasue, H., and Shiraishi, F., A highly accurate numerical method for calculating apparent kinetic parameters of immobilized enzyme reactions: 1. Theory. Biochem. Eng. J., 3, pp.91-101 (1999).

5) Miyakawa, H., Nagasue, H., and Shiraishi, F., A highly accurate numerical method for calculating apparent kinetic parameters of immobilized enzyme reactions: 2. Accuracies of calculated values. Biochem. Eng. J., 3, pp.103-111 (1999).

6) Shiraishi, F., Highly accurate solution of the axial dispersion model expressed in S-system canonical form by Taylor series method. Chem. Eng. J., 83, pp.175-183 (2001).

7) Shiraishi, F., Takeuchi, H., Hasegawa, T., and Nagasue, H., A Taylor-series solution in Cartesian space to GMA-system equations and its application to initial-value problems. Appl. Math. Comput., 127, pp.103-123 (2002).

光触媒反応システムの開発
1)白石文秀,冨金原悟,今井克哉,中野勝之, 透明チタニア薄膜を被覆した光触媒反応器の反応特性およびCELSSへの応用. CELSS学会誌, 9(1), pp.19-25 (1996).

2) Obuchi, E., Sakamoto, T., Nakano, K., and Shiraishi, F., Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem. Eng. Sci., 54, pp.1525-1530 (1999).

3) Shiraishi, F., Toyoda, K., Fukinbara, S., Obuchi, E., and Nakano, K., Photolytic and photocatalytic treatment of an aqueous solution containing microbial cells and organic compounds in an annular-flow reactor. Chem. Eng. Sci., 54, pp.1547-1552 (1999).

4) Xu, J.-H. and Shiraishi, F., Photocatalytic decomposition of acetaldehyde in air over titanium dioxide. J. Chem. Technol. Biotechnol., 74, pp.1096-1100 (1999).

5) Fukinbara, S. and Shiraishi, F., Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source: 2.Kinetic analysis. CELSS J., 13, pp.11-23 (2001).

6) Fukinbara, S., Shiraishi, F., and Nakano, K., Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source: 1.Selection of a light source and photocatalyst support. CELSS J., 13(2), pp.1-10 (2001).

7) Shiraishi, F., Ohbuchi, Y., Yamaguchi, S., Yamada, K., Yamauchi, H., and Okano, H., A rapid treatment of indoor formaldehyde at a very low concentration in a photocatalytic reactor system combined with a continuous adsorption and desorption technique. Chem. Ing. Tech., 73(6), pp.601-602 (2001).

8) Wang, S., Shiraishi, F., and Nakano, K., A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chem. Eng. J., 87, pp.261-271 (2002).

9) Wang, S., Shiraishi, F., and Nakano, K., Decomposition of formic acid in a photocatalytic reactor with a parallel array of four light sources. J. Chem. Technol. Biotechnol., 77, pp.805-810 (2002).

10)王音欠鵬,白石文秀,二つのタイプの光触媒反応器による蟻酸分解:分解速度への境膜拡散抵抗および紫外線透過の影響. Eco-Engineering(生態工学会誌), 14(2), pp.9-17 (2002).

11) Shiraishi, F., Nakasako, T., and Hua, Z., Formation of hydrogen peroxide in photocatalytic reactions. J. Phys. Chem. A, 107, pp.11072-11081 (2003).

12) Shiraishi, F., Yamaguchi, S., and Ohbuchi, Y., A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus. Chem. Eng. Sci., 58, pp.929-934 (2003).

13) Jin, S. and Shiraishi, F., Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chem. Eng. J., 97, pp.203-211 (2004).

14) Wang, S., Shiraishi, F., and Hua, Z.,Removal of Cyanobacterial Hepatotoxin (Microcystin) by Immobilized Titanium Dioxide Catalyst and Activated Carbon. 10th APCChE, (Kitakyushu), in press, 2004.

15) Hua, Z., Shiraishi, F.,Wang, S., andChen, J., Degradation of formic acid by photocatalytic reaction combined with Fenton reaction on a Nafion membrane adsorbing iron ion, 10th APCChE, (Kitakyushu), in press, 2004.

16) Shiraishi, F. and Kawanishi, C., An effect of diffusional film on formation of hydrogen peroxide in photocatalytic reactions. J. Phys. Chem. A, in press (2003).